The San1 Ubiquitin Ligase Functions Preferentially with Ubiquitin-conjugating Enzyme Ubc1 during Protein Quality Control.
نویسندگان
چکیده
Protein quality control (PQC) is a critical process wherein misfolded or damaged proteins are cleared from the cell to maintain protein homeostasis. In eukaryotic cells, the removal of misfolded proteins is primarily accomplished by the ubiquitin-proteasome system. In the ubiquitin-proteasome system, ubiquitin-conjugating enzymes and ubiquitin ligases append polyubiquitin chains onto misfolded protein substrates signaling for their degradation. The kinetics of protein ubiquitylation are paramount as a balance must be achieved between the rapid removal of misfolded proteins versus providing sufficient time for protein chaperones to attempt refolding. To uncover the molecular basis for how PQC substrate ubiquitylation rates are controlled, the reaction catalyzed by nuclear ubiquitin ligase San1 was reconstituted in vitro Our results demonstrate that San1 can function with two ubiquitin-conjugating enzymes, Cdc34 and Ubc1. Although Cdc34 and Ubc1 are both sufficient for promoting San1 activity, San1 functions preferentially with Ubc1, including when both Ubc1 and Cdc34 are present. Notably, a homogeneous peptide that mimics a misfolded PQC substrate was developed and enabled quantification of the kinetics of San1-catalyzed ubiquitylation reactions. We discuss how these results may have broad implications for the regulation of PQC-mediated protein degradation.
منابع مشابه
Means of self-preservation: how an intrinsically disordered ubiquitin-protein ligase averts self-destruction
Ubiquitin-protein ligases (E3s) that ubiquitinate substrates for proteasomal degradation are often in the position of ubiquitinating themselves due to interactions with a charged ubiquitin-conjugating enzyme (E2). This can mediate the E3's proteasomal degradation. Many E3s have evolved means to avoid autoubiquitination, including protection by partner or substrate binding, preventative modifica...
متن کاملBioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases
The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, sub...
متن کاملCatalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin.
Protein ubiquitination is catalyzed by ubiquitin-conjugating enzymes (E2s) in collaboration with ubiquitin-protein ligases (E3s). This process depends on nucleophilic attack by a substrate lysine on a thioester bond linking the C terminus of ubiquitin to a cysteine in the E2 active site. Different E2 family members display specificity for lysines in distinct contexts. We addressed the mechanist...
متن کاملSelective Recruitment of an E2∼Ubiquitin Complex by an E3 Ubiquitin Ligase*
RING E3 ligases are proteins that must selectively recruit an E2-conjugating enzyme and facilitate ubiquitin transfer to a substrate. It is not clear how a RING E3 ligase differentiates a naked E2 enzyme from the E2∼ubiquitin-conjugated form or how this is altered upon ubiquitin transfer. RING-box protein 1 (Rbx1/ROC1) is a key protein found in the Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligase ...
متن کاملThe HIP2~Ubiquitin Conjugate Forms a Non-Compact Monomeric Thioester during Di-Ubiquitin Synthesis
Polyubiquitination is a post-translational event used to control the degradation of damaged or unwanted proteins by modifying the target protein with a chain of ubiquitin molecules. One potential mechanism for the assembly of polyubiquitin chains involves the dimerization of an E2 conjugating enzyme allowing conjugated ubiquitin molecules to be put into close proximity to assist reactivity. HIP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 291 36 شماره
صفحات -
تاریخ انتشار 2016